Пульсоксиметр при бронхиальной астме
Пульсоксиметрия – это простой и безболезненный метод измерения насыщения, или сатурации гемоглобина крови кислородом, или оперативный неинвазивный (без введения инструмента в полости организма) способ контроля сатурации (насыщенности гемоглобина крови кислородом).
Зачем нужен пульсоксиметр?
Для измерения частоты пульса (удары в минуту в среднем за 5-20 секунд) и насыщения гемоглобина артериальной крови кислородом – среднее количество кислорода, связанное с каждой молекулой гемоглобина. Данные выдаются в виде процента насыщения и звукового сигнала, высота которого изменяется в зависимости от сатурации.
Пульсоксиметр не дает информации о содержании кислорода в крови, о количестве растворенного в крови кислорода, о дыхательном объеме, частоте дыхания, о сердечном выбросе или артериальном давлении.
Применение пульсоксиметров целесообразно при обследовании состояния пациента в клиниках и в ходе процедур с седацией пациентов. Это также необходимо при оперативной транспортировке пациента или после анестезии при непрерывном контроле процесса пробуждения. При помощи этих приборов проводится и измерении уровня SaO2 и ЧСС во время анестезии.
Как?
Источниками излучения в пульсоксиметрическом датчике являются два встроенных светоизлучающих диода. Излучаемый ими свет проникает сквозь мягкие ткани и принимается фотоприемником, от которого результат замера передается вычислительному блоку (микропроцессору).
Принцип работы пульсоксиметра основан на анализе поглощения красного и инфракрасного излучения гемоглобином крови. У связанного и несвязанного с кислородом гемоглобина спектры поглощения света разные. Пульсоксиметр «просвечивает» мягкие ткани пальца и улавливает разницу в поглощении света.
Пульсоксиметр, как правило, включает в себя вычислительный (компьютерный) блок и специализированный датчик, фиксирующийся на мочке уха пациента или на пальце.
При нарушении функции легких им не удается извлекать из воздуха достаточное количество кислорода, и сатурация падает. Если болезнь развивается постепенно, в течение месяцев и лет, человек может не замечать снижение сатурации до 92-95%. Однако уже на этом этапе ухудшается переносимость физической нагрузки. При снижении сатурации до 89-92% следует задуматься о необходимости кислородотерапии и/или неинвазивной вентиляции легких.
Для определения каких заболеваний используется?
Для заболеваний сердечно-сосудистой либо дыхательной системы.
В «Центре пульмонологии» высококвалифицированные специалисты и современное высокотехнологичное оборудование помогут Вам определить заболевание на самых ранних стадиях.
К сведению:
Гемоглобин — белок, ответственный за перенос кислорода. В артериальной крови (той, которая идет от легких к органам) гемоглобин в норме почти весь связан с кислородом. Иначе говоря, нормальная сатурация артериальной крови — 97-100%.
Пульсоксиметрия может осуществляться как с помощью многофункциональных реанимационных мониторов, так и с помощью портативных пульсоксиметров, работающих от батарейки. Последние очень удобны для домашнего использования. Пульсоксиметр представляет собой прибор размером со спичечный коробок, который надевается на палец руки пациента. Метод абсолютно безопасный и безболезненный.
Для диагностики нарушений сна используют компьютерные пульсоксиметры. Больной надевает такой пульсоксиметр на палец вечером и снимает — утром. В течение ночи прибор записывает показатели. На следующий день врач может получить данные с пульсоксиметра и выявить характерное снижение сатурации.
Источник
Пульсоксиметр — медицинское устройство, которое косвенно измеряет насыщение кислородом крови пациентов (в отличие от измерения насыщения кислородом непосредственно через кровь) и изменения объема крови в коже, производя фотоплетизмографию.
Принцип работы:
Гемоглобин, который связан с кислородом (оксигемоглобин), имеет ярко-красный цвет. Гемоглобин не связанный с кислородом, (венозный гемоглобин), имеет темно-красный цвет. Поэтому цвет у артериальной крови ярко красный, а у венозной крови темно красный.
Работа пульсоксиметра базируется на способности связанного с кислородом гемоглобина НbО2 больше поглощать волны инфракрасного диапазона (максимум поглощения приходится на 940 нм), а не связанного с кислородом гемоглобина Нb больше поглощать волны красного диапазона (максимум поглощения приходится на 660 нм).
В пульсоксиметре используются два источника излучения (с длиной волны 660 нм и 940 нм) и два фотооптических элемента, работающих в этих диапазонах. Интенсивность излучения, измеренная фотоэлементами зависит от многих факторов, большинство из которых постоянно. Только пульсации в артериях происходят непрерывно и вызывают изменения в поглощающей способности тканей. Изменения в количестве света, который поглотился в тканях соответствуют изменениям в артериях.
Пульсоксиметр непрерывно вычисляет разницу между поглощением сигнала в красной и инфракрасной области спектра и на основании формулы, полученной опытным путем с использованием закона Ламберта-Бэра, рассчитывает значение сатурации. Изменение поглощающей способности тканей, вызванное пульсациями в артериях, фиксируется в виде кривой плезиограммы. А измеряя расстояние между её гребнями, пульсоксиметр рассчитывает частоту пульса. Измеренные значения могут быть отражены на экране, а так же записаны в память приборов для дальнейшего анализа.
Сатурацией кислорода (SaO2 или SpO2) называют отношение количества оксигемоглобина к общему количеству гемоглобина в крови, выраженное в процентах.
BPM (beats per minute) – количество ударов в минуту
Портативные пульсоксиметры имеют миниатюрные размеры и весьма неплохо справляются с возложенными на них обязанностями — измерять пульс и насыщение кислородом крови.
Давайте перейдем к обзору такого устройства, на примере, FDA HC50dl.
Данный пульсоксиметр был заказан на Aliexpress за 16$ (около 610 рублей по курсу доллара на конец августа). Стоимость аналогов данного устройства на отечественном рынке составляет 2-3 тысячи рублей. Представьте себе и это за кусок пластмассы с двумя сенсорами и светодиодами.
Посылка из Китая прибыла в место назначения через 27 дней, что очень неплохо, так как местом назначения был даже не город.
Спецификации данного устройства:
Цвет: Черный
Материал: ABS пластик
Дисплей: светодиодный
Границы определения SPO2: 35 — 99%
Границы определения пульса: 30 — 250BPM
Разрешение: 1% SpO2, 1bpm для пульса
Точность: + / — 2% (70% — 99%) для SPO2, + / — 2BPM или + / — 2% для пульса.
Оптический сенсор: Волны красного диапазона 660нм, инфракрасные волны 880нм
Размеры: Д: 58 х Ш: 32 х 34 (мм)
Питание: Две щелочные батареи типа ААА (не включены)
Потребление энергии: Две 1.5В AAA, 600mAh щелочные батареи можно непрерывно использовать в течении 30 часов (т.е. держать устройство постоянно включенным)
Что понравилось: автоматическое выключение при неиспользовании в течение 5 секунд, индикатор низкого заряда батареи, достаточная точность измерений, легкий и компактный размер, ну и конечно цена.
Что не понравилось: Желательно тестировать устройство, чтобы удостоверится в правильности измерений. Отсутствие батареек в комплекте с устройством.
Чтобы протестировать устройство: пальпаторно измерьте величину пульса на лучевой артерии и посчитайте ЧСС на верхушке сердца. Сопоставьте эти данные с данными прибора.
В моем случае разница оказалась минимальна – примерно также как и в спецификациях.
Зачем нужен пульсоксиметр?
Пульсоксиметр пригодится в диагностике:
Заболеваний легких, сопровождающихся явлениями дыхательной недостаточности (ХОБЛ, бронхиальная астма, отек легких, саркоидоз, туберкулез)
Заболеваний сердца с выраженными нарушениями гемодинамики в большом и малом кругах кровообращения (ХСН, ОИМ, ОСН, аритмии, декомпенсированные пороки сердца, кардиомиопатии, миокардиты, перикардиты)
Заболеваний крови (железодефицитные и геморрагические анемии)
И это еще не полный список.
А еще им пользуются альпинисты, горнолыжники, летчики. Так как при подъёме на большую высоту происходит снижение парциального давления кислорода и наступает кислородное голодание.
На этом хочу закончить обзор данного устройства.
Совсем скоро выложу видео с обзором этого пульсоксиметра.
Если у Вас есть вопросы – пишите их в комментариях ниже.
Источник
Наверх
| |||||||||||||||
В связи с большим количеством поступающих звонков, возможны задержки обработке входящих звонков! Главная → Пульсоксиметры → Пульсоксиметры для астматиков
| |||||||||||||||
Источник
Пульсоксиметрия является наиболее доступным методом мониторинга больных во многих условиях, особенно при ограниченном финансировании. Она позволяет при определенном навыке оценивать несколько параметров состояния больного. После успешного внедрения в интенсивной терапии, палатах пробуждения и во время анестезии, метод начал использоваться и в других областях медицины, например, в общих отделениях, где персонал не проходил адекватного обучения по использованию пульсоксиметрии. Этот метод имеет свои недостатки и ограничения, а в руках необученного персонала возможны ситуации, угрожающие безопасности больного. Данная статья предназначена как раз для начинающего пользователя пульсоксиметрии.
Пульсоксиметр измеряет насыщение артериального гемоглобина кислородом. Используемая технология сложна, но имеет два основных физических принципа. Во первых, поглощение гемоглобином света двух различных по длине волн меняется в зависимости от насыщения его кислородом. Во-вторых, световой сигнал, проходя через ткани, становится пульсирующим из-за изменения объема артериального русла при каждом сокращении сердца. Этот компонент может быть отделен микропроцессором от непульсирующего, идущего от вен, капилляров и тканей.
На работу пульсоксиметра влияют многие факторы. Это могут быть внешний свет, дрожь, патологический гемоглобин, частота и ритм пульса, вазоконстрикция и работа сердца. Пульсоксиметр не позволяет судить о качестве вентиляции, а показывает только степень оксигенации, что может дать ложное чувство безопасности при ингаляции кислорода. Например, возможна задержка появления симптомов гипоксии при обструкции дыхательных путей. И все же оксиметрия является очень полезным видом мониторинга кардиореспираторной системы, повышающим безопасность больного.
Что измеряет пульсоксиметр?
- Насыщение гемоглобина артериальной крови кислородом – среднее количество кислорода, свзанное с каждой молекулой гемоглобина. Данные выдаются в виде процента насыщения и звукового сигнала, высота которого изменяется в зависимости от сатурации.
- Частота пульса – удары в минуту в среднем за 5-20 секунд.
Пульсоксиметр не дает информации о:
- содержании кислорода в крови;
- количестве растворенного в крови кислорода;
- дыхательном объеме, частоте дыхания;
- сердечном выбросе или артериальном давлении.
О систолическом артериальном давлении можно судить по появлению волны на плетизмограмме при сдувании манжетки для неинвазивного измерения давления.
Принципы современной пульсоксиметрии
Кислород транспортируется кровотоком главным образом в связанном с гемоглобином виде. Одна молекула гемоглобина может перенести 4 молекулы кислорода и в этом случае она будет насыщена на 100%. Средний процент насыщения популяции молекул гемоглобина в определенном объеме крови и является кислородной сатурацией крови. Очень небольшое количество кислорода переносится растворенным в крови, однако пульсоксиметром не измеряется.
Отношение между парциальным давлением кислорода в артериальной крови (РаО2) и сатурацией отражается в кривой диссоциации гемоглобина (рис. 1). Сигмовидная форма кривой отражает разгрузку кислорода в периферических тканях, где РаО2 низкий. Кривая может сдвигаться влево или право при различных состояниях, например, после гемотрансфузии.
Пульсоксиметр состоит из периферического датчика, микропроцессора, дисплея, показывающего кривую пульса, значение сатурации и частоты пульса. Большинство аппаратов имеют звуковой сигнал определенного тона, высота которого пропорциональна сатурации, что очень полезно, если не виден дисплей пульсоксиметра. Датчик устанавливается в периферических отделах организма, например, на пальцах, мочке уха или крыле носа. В датчике находятся два светодиода, один из которых излучает видимый свет красного спектра (660 нм), другой – в инфракрасном спектре (940 нм). Свет проходит через ткани к фотодетектору, при этом часть излучения поглощается кровью и мягкими тканями в зависимости от концентрации в них гемоглобина. Количество поглощенного света каждой из длин волн зависит от степени оксигенации гемоглобина в тканях.
Микропроцессор способен выделить из спектра поглощения пульсовой компонент крови, т.е. отделить компонент артериальной крови от постоянного компонента венозной или капиллярной крови. Микропроцессоры последнего поколения способны уменьшить влияние рассеивания света на работу пульсоксиметра. Многократное разделение сигнала во времени выполняется с помощью цикличной работы светодиодов: включается красный, затем инфракрасный, затем оба отключаются, и так много раз в секунду, что позволяет устранить фоновый «шум». Новая возможность микропроцессоров это квадратичное многократное разделение, при котором красный и инфракрасный сигналы разделяются по фазам, а затем вновь комбинируются. При таком варианте могут быть устранены помехи от движения или электромагнитного излучения, т.к. они не могут возникать в одну и ту же фазу двух сигналов светодиодов.
Сатурация вычисляется в среднем за 5-20 секунд. Частота пульса рассчитывается по числу циклов светодиодов и уверенным пульсирующим сигналам за определенный промежуток времени.
По пропорции поглощенного света каждой из частот микропроцессор вычисляет их коэффициент. В памяти пульсоксиметра имеется серия значений насыщения кислородом, полученные в экспериментах на добровольцах с гипоксической газовой смесью. Микропроцессор сравнивает полученный коэффициент поглощения двух длин волн света с хранящимися в памяти значениями. Т.к. неэтично снижать насыщение кислородом у добровольцев ниже 70%, то необходимо признать, что значение сатурации ниже 70%, полученное по пульсоксиметру, не является надежным.
Отраженная пульсоксиметрия использует отраженный свет, поэтому может применяться проксимальнее (например, на предплечье или передней брюшной стенке), однако в этом случае будет трудно зафиксировать датчик. Принцип работы у такого пульсоксиметра тот же, что и у трансмиссионного.
Практические советы по использованию пульсоксиметрии:
- пульсоксиметр необходимо держать постоянно включенным в электрическую сеть для зарядки батарей;
- включите пульсоксиметр и подождите, пока он произведет самотестирование;
- выберите необходимый датчик, подходящий по размерам и для выбранных условий установки. Ногтевые фаланги должны быть чистыми (удалите лак);
- поместите датчик на выбранный палец, избегая избыточного давления;
- подождите несколько секунд, пока пульсоксиметр определит пульс и вычислит сатурацию;
- посмотрите на кривую пульсовой волны. Без нее любые значения малозначимы;
- посмотрите на появившиеся цифры пульса и сатурации. Будьте осторожны с их оценкой при быстром изменении их значений (например, 99% внезапно меняется на 85%). Это физиологически невозможно;
- если сомневаетесь, оцените больного клинически, а не полагайтесь на машину;
Тревоги:
- если звучит сигнал тревоги «низкая кислородная сатурация», проверьте сознание больного (если оно исходно было). Проверьте проходимость дыхательных путей и адекватность дыхания больного. Поднимите подбородок или воспользуйтесь другими методами восстановления проходимости дыхательных путей. Дайте кислород. Позовите на помощь.
- Если звучит сигнал тревоги «не определяется пульс», посмотрите на кривую пульсовой волны на дисплее пульсоксиметра. Нащупайте пульс на центральной артерии. При отсутствии пульса зовите на помощь, начинайте комплекс сердечно-легочной реанимации. Если пульс есть, поменяйте положение датчика.
- На большинстве пульсоксиметров вы можете поменять пределы тревог сатурации и частоты пульса по своему усмотрению. Однако не меняйте их только для того, чтобы сигнал тревоги замолчал – он может рассказать кое-что важное!
Использование пульсоксиметрии
- В «полевых условиях» наилучшим является простой портативный монитор типа «все в одном», отслеживающий сатурацию, частоту пульса и регулярность ритма.
- Безопасный неинвазивный монитор кардио-респираторного статуса критических больных в отделении интенсивной терапии, а также при всех видах анестезии. Может использоваться при эндоскопии, когда больным проводится седация мидазоламом. Пульсоксиметрия диагностирует цианоз надежнее самого лучшего доктора.
- Во время транспортировки больного, особенно в шумных условиях, например, в самолете, вертолете. Звуковой сигнал и тревога могут быть не услышаны, однако кривая пульсовой волны и значение сатурации дают общую информацию о кардио-респираторном статусе.
- Для оценки жизнеспособности конечностей после пластических и ортопедических операций, протезирования сосудов. Пульсоксиметрия требует пульсирующего сигнала, и таким образом помогает определить, получает ли конечность кровь.
- Помогает уменьшить частоту взятия крови для исследования газового состава у больных в отделении интенсивной терапии, особенно в педиатрической практике.
- Помогает ограничить у недоношенных младенцев вероятность развития повреждения легких и сетчатки кислородом (сатурацию поддерживают на уровне 90%). Хотя пульсоксиметры и калибруются по гемоглобину взрослых (HbA), спектр поглощения HbA и HbF в большинстве случаев идентичен, что делает методику столь же надежной и у младенцев.
- Во время торакальной анестезии, когда одно из легких коллабируется, помогает определить эффективность оксигенации в оставшемся легком.
- Оксиметрия плода – развивающаяся методика. Используется отраженная оксиметрия, светодиоды с длиной волн 735 нм и 900 нм. Датчик помещается над виском или щекой плода. Датчик должен быть стерилизуемым. Его трудно закрепить, данные не стабильны по физиологическим и техническим причинам.
Ограничение пульсоксиметрии:
- Это не монитор вентиляции. По последним данным обращается внимание на ложное чувство безопасности, создаваемое у анестезиолога пульсоксиметрами. Пожилая женщина в блоке пробуждения получала кислород через маску. Она стала прогрессивно загружаться, несмотря на то, что сатурация была у нее 96%. Причина была в том, что частота дыхания и минутный объем вентиляции были низкие из-за остаточного нейромышечного блока, а в выдыхаемом воздухе концентрация кислорода была очень высокой. В конце концов, концентрация углекислоты в артериальной крови достигла 280 mmHg (в норме 40), в связи с чем больная была переведена в отделение реанимации и находилась в течение 24 часов на ИВЛ. Таким образом, пульсоксиметрия дала хорошую оценку оксигенации, но не дала прямой информации о прогрессирующих нарушениях дыхания.
- Критические больные. У критических больных эффективность метода мала, так как перфузия тканей у них плохая и пульсоксиметр не может определить пульсирующий сигнал.
- Наличие пульсовой волны. Если нет видимой пульсовой волны на пульсоксиметре, любые цифры процента сатурации малозначимы.
- Неточность.
- Яркий внешний свет, дрожь, движения могут создавать пульсобразную кривую и значения сатурации без пульса.
- Анормальные типы гемоглобина (например, метгемоглобин при передозировке прилокаина) могут давать значения сатурации на уровне 85%.
- Карбоксигемоглобин, появляющийся при отравлении угарным газом, может давать значение сатурации около 100%. Пульсоксиметр дает ложные значения при этой патологии, поэтому не должен использоваться.
- Красители, включая лак для ногтей, могут спровоцировать заниженное значение сатурации.
- Вазоконстрикция и гипотермия вызывают ослабление перфузии тканей и ухудшают регистрацию сигнала.
- Трикуспидальная регургитация вызывает венозную пульсацию и пульсоксиметр может фиксировать венозную сатурацию.
- Значение сатурации ниже 70% не точное, т.к. нет контрольных значений для сравнения.
- Нарушение ритма сердца может нарушать восприятие пульсоксиметром пульсового сигнала. NB! Возраст, пол, анемия, желтуха и кожа темного цвета практически не влияют на работу пульсоксиметра.
- Запаздывающий монитор. Это значит, что парциальное давление кислорода в крови может снижаться гораздо быстрее, чем начнет снижаться сатурация. Если здоровый взрослый пациент будет дышать 100% кислородом в течение минуты, а затем вентиляция прекратится по каким-либо причинам, может пройти несколько минут, прежде чем сатурация начнет снижаться. Пульсоксиметр в этих условиях предупредит о потенциально фатальном осложнении лишь через несколько минут после того, как оно случилось. Поэтому пульсоксиметр называют «часовым, стоящим на краю пропасти десатурации». Объяснение этого факта находится в сигмовидной форме кривой диссоциации оксигемоглобина (рис. 1).
- Задержка реакции связана с тем, что сигнал усредненный. Это значит, что существует задержка 5-20 секунд между тем, как реальная кислородная сатурация начинает падать и изменяются значения на дисплее пульсоксиметра.
- Безопасность больного. Имеются одно или два сообщения об ожогах и повреждении избыточным давлением при использовании пульсоксиметров. Это связано с тем, что в ранних моделях в датчиках применялся нагреватель для улучшения местной тканевой перфузии. Датчик должен быть правильного размера и не должен оказывать избыточного давления. Сейчас появились датчики для педиатрии.
Особо нужно остановиться на правильном положении датчика. Необходимо, чтобы обе части датчика находились симметрично, иначе путь между фотодетектором и светодиодами будет неравным и одна из длин волн будет «перегруженной». Изменение положения датчика часто приводит к внезапному «улучшению» сатурации. Этот эффект может быть связан с непостоянным кровотоком через пульсирующие кожные венулы. Обратите внимание, что форма волны при этом может быть нормальной, т.к. измерение проводится только по одной из длин волн.
Альтернативы пульсоксиметрии
- СО-оксиметрия является золотым стандартом и классическим методом калибровки пульсоксиметра. СО-оксиметр вычисляет фактическую концентрацию гемоглобина, деоксигемоглобина, карбоксигемоглобина, метгемоглобина в пробе крови, а затем вычисляет фактическую кислородную сатурацию. СО-оксиметры более точны, чем пульсоксиметры (в пределах 1%). Однако они дают сатурацию в определенный момент («снимок»), громоздки, дороги и требуют забора пробы артериальной крови. Им необходимо постоянное обслуживание.
- Анализ газов крови – требует инвазивного взятия образца артериальной крови больного. Он дает «полную картину», включающую парциальное давление кислорода и углекислоты в артериальной крови, ее рН, актуальный бикарбонат и его дефицит, стандартизованную концентрацию бикарбоната. Множество газовых анализаторов вычисляют сатурацию, которая менее точна, чем вычисляемая пульсоксиметрами.
В заключение
- Пульсоксиметр дает неинвазивную оценку насыщения артериального гемоглобина кислородом.
- Используется в анестезиологии, блоке пробуждения, интенсивной терапии (включая неонатальную), при транспортировке больного.
- Используются два принципа:
- u раздельное поглощение света гемоглобином и оксигемоглобином;
- u выделение из сигнала пульсирующего компонента.
- Не дает прямых указаний на вентиляцию больного, только на его оксигенацию.
- Запаздывающий монитор – существует время задержки между началом потенциальной гипоксии и реакцией пульсоксиметра.
- Неточность при сильном внешнем свете, дрожи, вазоконстрикции, патологическом гемоглобине, изменении пульса и ритма.
- В новых микропроцессорах обработка сигнала улучшается.
Литература
- Stoneham MD,Saville GM,Wilson IH.Knowledge about pulse oximetry among medical and nursing staff.Lancet 1994:334:1339-1342.
- Moyle JTB.Pulse oximetry.Principles and Practice Series.Editors:Hahn CEW and Adams AP.BMJ Publishing,London,1994.
- Davidson JAH,Hosie HE.Limitations of pulse oximetry:respiratory insufficiency -a failure of detection.BMJ 1993;307:372-373.
- Hutton P,Clutton-Brock T.The benefits and pitfalls of pulseoximetry.BMJ 1993;307:457-458
Источник