Генетика при бронхиальной астме

Обсуждается генетический компонент развития бронхиальной астмы. Гены-кандидаты расположены на хромосомах 2, 4, 7, на кластере цитокинов, на хромосоме 5 и на хромосоме 6 в области MHC.

Genetics of bronchial asthma

Authors discussed genetic component development of bronchial asthma. Candidate genes located on chromosomes 2, 4, 7, on a cluster of cytokines, on chromosome 5 and on chromosome 6 in the MHC.

Бронхиальная астма (БА) — заболевание с выраженной наследственной предрасположенностью. Дети, имеющие родственников первой линии родства с БА, имеют высокий риск развития клинических проявлений астмы [1]. Некоторые клиницисты большое внимание уделяют признакам мезенхимальной дисплазии как внешним маркерам генетических особенностей. У пациентов с БА часто встречаются множественные стигмы дисморфогенеза, патология соединительной ткани, кожные факомы. По итогам близнецовых исследований, генетический вклад в развитие БА оценивается в 30-70%.

Таблица 1.

Риск атопии у пробанда при достижении им возраста 7 лет в зависимости от наличия атопии в семейном анамнезе

Семейный анамнезРиск развития атопии (%)
Нет атопии10
Один из родителей страдает атопией20
Сиблинги страдают атопией35
Оба родителя страдают атопией, но разными вариантами42
Оба родителя страдают атопией, клиническая форма идентична75

БА — типичное заболевание мультифакториальной природы, развитие которого определяется взаимодействием наследственных факторов (мутаций или сочетаний аллелей) и факторов среды.

В последние годы генетические исследования при астме ведутся по нескольким направлениям: выявление вариантов генов, которые могут предсказать ответ на терапию, выявление вариантов генов, которые связаны с развитием болезни и играющих решающую роль в патофизиологии заболевания.

Верифицированы несколько групп генов-кандидатов, которые важны в развитии БА.

Гены атопии или гуморального иммунного ответа локализованы в участках хромосомы 5q24-33 и содержат кластер семейства генов цитокинов (IL-4, IL-5, IL-13, IL-3, GM-CSF), ответственный за развитие реакций немедленного типа (IgE-опосредованных реакций). IL-4, IL-13 экспрессируются Th-2 лимфоцитами и способствуют переключению В-клеток на синтез IgE. IL-5 и GM-CSF — цитокины, обеспечивающие созревание, выживание и хемотаксис эозинофилов. К этой группе также относят HLA-DR (гены молекул II класса МНС) — важные молекулы, участвующие в презентации антигена. Имеющиеся сегодня данные свидетельствуют, что полиморфизм генов интерлейкинов и их рецепторов является важным генетическим фактором возникновения БА и атопии [2, 3].

Гены рецепторных молекул (IL-4Rα, FcεRI β, ADRβ2). IL-4Rα — альфа цепь рецептора IL-4. Mitsuyasu et al. [4] сообщили о полиморфном варианте гена Ile50Val IL-4Rα цепи, наличие которого повышает синтез IgE и является одним из определяющих наследственных факторов возникновения атопической формы заболевания. В 17% случаев замена одного аминокислотного остатка (изолейцина лейцином в позиции 181) в гене, кодирующем β-субъединицу высокоаффинного рецептора к IgE (FcεRI β), приводит к развитию бронхиальной астмы. Однако аналогичные исследования, проведенные в Италии и Японии, такой закономерности не выявили.

Продукт ADRβ2 (гена β2-адренергического рецептора; 11q13) контролирует лабильность бронхов. Установлен полиморфизм гена ADRβ2 (Arg16Gly и Glu27Gln), определяющий повышенную вероятность развития тяжелой бронхиальной астмы. Более того, больные гомозиготные по этим вариантам гена быстро теряют чувствительность к β2-агонистам и требуют лечения гормональными препаратами [5]. Это является одним из достижений в фармакогенетике БА. Причем ген рецептора IL-4 (IL4RA) и ген, кодирующий β-субъединицу высокоаффинного рецептора к IgE (FcεRI β), могут быть отнесены к генам атопии, а ген ADRβ2 — к генам бронхиальной гиперреактивности.

Южнокорейскими учеными [6] выявлены 2 полиморфных гена CRTH2, экспрессирующихся на поверхности эозинофилов, с однонуклеотидными заменами -466T>C и -129C>A, которые тесно связаны с инфильтрацией эозинофилами дыхательных путей у больных с аспирин-индуцированной БА. Гены факторов транскрипции — STAT6, JAK1, JAK3 [7] ассоциированы с наличием БА. Последний мета-анализ объединил результаты 11 исследований [8]. Выявлены хромосомные регионы, содержащие ведущие гены восприимчивости к БА, при использовании самых строгих статистических критериев. К ним относятся 6p22.3-p21.1 (гиперактивность бронхов), 5q11.2-q14.3 и 6pter-p22.3 (концентрация общего IgE), 3p22.1-q22.1, и 17p12-q24.3 (положительный кожный тест). Однако никакой преобладающей ассоциации среди указанных регионов не обнаружено, что объясняет гетерогенность болезни и вариабельность диагноза в разных популяциях разных стран.

Признано, что многочисленные гены взаимодействуют между собой при БА и атопии, повышая или уменьшая риск развития болезни. При наличии генов, кодирующих IL-13 и IL-4RA (обе ключевые молекулы в Th-2 сигнализации), выявлен в 2,5 раза больший риск развития БА, чем у индивидуумов с наличием одного гена. Исследование четырех генов показало, что комбинация определенного однонуклеотидного полиморфизма (SNPs) в IL-13, IL-4, IL4RА, и STAT 6 сопровождается 16,8-кратным увеличением риска БА. Эти сведения указывают на значение изучения взаимодействия генов при сложных болезнях и объясняют их роль в развитии и прогрессировании болезни.

Имеется предположение, что эндогенная БА — аутоиммунное заболевание, опосредованное аутоантителами к эпителиальному антигену. Не исключено, что появление аутоантител связано с генетически обусловленным дефицитом антиоксидантной системы. Свободные радикалы способны превращать макромолекулы в аутоантигены. На их возникновение иммунная система отвечает выработкой специфических аутоантител. В организме запускается аутоиммунный процесс, который в конечном итоге и приводит к БА. В этой связи относительно недавно обнаружена субпопуляция T-хелперов, названная Th17 [9], играющая значимую роль при аутоиммунных заболеваниях.

IL-17 является эффекторным цитокином, который продуцируют Th17 клетки, и его повышенная концентрация выявлена в слюне больных БА [10]. Однако имеются исследования [11] о варианте гена IL-17, His161Arg, который ассоциирован с протективным эффектом при астме. В 2009 году обнаружены новые гены восприимчивости к БА, не связанные с иммунной системой. Полиморфизм генов хитиназы и хитиназоподобных белков CHIT1, CHIA, CHI3L1 сочетается с риском БА.

Относительно недавно был охарактеризован первый позиционно клонированный ген астмы ADAM33 [12] на хромосоме 20p13. Анализ 135 однонуклеотидных полиморфизмов в 23 из них показал наиболее существенную ассоциацию заболевания с вариантом гена ADAM33, который кодирует металлопротеазу, играющую важную роль в функционировании гладких мышц бронхов и фибробластов легкого. Эти данные свидетельствуют о важной роли ADAM33 в ремоделировании дыхательных путей. В настоящее время роль этих генетических вариаций, связанных с восприимчивостью к астме, подтверждена в Саудовской Аравии, Китае [13]. В локусе хромосомы 1q31 в 2010 году был идентифицирован ген DENND1B, который экспрессируется натуральными киллерами и дендритными клетками, кодирует белок, взаимодействующий с рецептором фактора некроза опухоли, и связан с развитием БА [14].

Читайте также:  Как получить инвалидность с диагнозом бронхиальная астма

Гены-модификаторы (GSTM1, GSTT1, CYP2E1, NAT2, SLC11A1). На сегодняшний день известно, что в патологии БА принимают участия белковые продукты генов системы детоксикации ксенобиотиков. Недавними исследованиями Сардарян И.С. [15] изучены фенотипические особенности БА при аллельном полиморфизме генов глутатион-S-трансферазы Т1 (GSTT1), глутатион-S-трансферазы М1 (GSTM1), ангиотензин превращающего фермента (ACE), эндотелиальной синтазы оксида азота (eNOS). Выявлено, что ассоциация генотипов GSTT1-GSTM1‑ повышает в 5 раз риск развития БА у детей по сравнению с популяцией. У детей при функционально активном генотипе GSTT1+GSTM1+ в ассоциации с полиморфизмом II по гену АСЕ риск развития БА снижается в 7 раз, что позволяет считать данную ассоциацию генотипов протективной.

В заключение можно указать, что к развитию астмы причастны много генов, расположенных на разных хромосомах. Прежде всего это генный комплекс HLA на 6-й хромосоме. Кроме того, с развитием БА связаны:

  • локусы 2 pter*
  • 2q6 (реакция на домашних клещей)
  • 2q33 (CD28; белок, связывающий инсулиноподобный фактор)
  • 3p24.2-p22 (С-С рецептор хемокина)*
  • 4q35 (интерферонорегулирующий фактор-2)*
  • 5q15 (ген не идентифицирован)
  • 5q23-q33 (IL-3; IL-4; IL-5; IL-9; IL-13; глюкокортикоидный рецептор)**
  • 5q31 (гены регуляции IgE). В непосредственной близости расположены гены бронхиальной гиперреактивности и адренергических b2 рецепторов
  • 6p21.1-p23 (HLA, фактор некроза опухолей α)*
  • 7р15.2 (Т-клеточный рецептор G, IL-6)*
  • 9q31.1 (тропомиозин связывающий белок)*
  • 11р15 (ген не идентифицирован)
  • 11q13 (ген b-цепи высоко аффинного IgE рецептора, триггер аллергических реакций на мастоцитах, передается по материнской линии, отцовский «импринтинг» вероятен)**
  • 12q (синтаза оксида азота)
  • 12q14-q24.33 (сигнальный кондуктор и активатор транскрипции 6; интерферон γ; фактор стволовых клеток; инсулин-подобный фактор роста 1; лейкотриен А4 гидролаза; β субъединица ядерного фактора Y; В-клеточный транслокационный ген 1)**
  • 13q14.3-qtep (трансляционно контролируемый протеин-1 опухоли)*
  • 16q22.1-q24.2 (ген не идентифицирован)
  • 17p11.1-q11.2 (хемокиновый кластер)
  • 19q13 (CD22)
  • 21q21 (ген не идентифицирован)
  • Xq28/Yq28 (рецептор IL-9)

—————————————————

Примечание:

* — общие гены с атопией; ** — общие гены с атопией и атопическим дерматитом

Данный перечень генов, ответственных за развитие БА, не полон. Не упомянуты гены, участвующие в ремоделировании дыхательных путей, гетерогенна и гиперреактивность дыхательных путей. Все это делает понятным клинический полиморфизм заболевания.

Будет ли возможно в будущем предсказать развитие БА, базируясь на генетическом тестировании? Предсказующая величина тестирования единственного гена при полигенном наследовании болезни очень ограничена как для диагностики, так и в профилактических целях. В будущем прогноз астмы, возможно, будет основываться на оценке комплекса генов, персональных факторов и факторов риска окружающей среды, вместе содействующих развитию, персистенции, прогрессированию или ремиссии БА [16, 17].

Ю.И. Будчанов, В.М. Делягин

Тверская государственная медицинская академия

Федеральный научно-клинический центр детской гематологии, онкологии и иммунологии, г. Москва

Будчанов Юрий Иванович — кандидат медицинских наук, доцент кафедры клинической иммунологии с аллергологией Тверской государственной медицинской академии.

Литература:

1.  Burr M., Merrett T., Dunstan F., Maguire M. The development of allergy in high-risk children // Clinical and Experimental Allergy, 1997. — v. 27. — Р. 1247-1252.

2.  Фрейдин М.Б., Огородова Л.М., Пузырев В.П. Вклад полиморфизма генов интерлейкинов в изменчивость количественных факторов риска атопической бронхиальной астмы // Мед. генетика, 2003. — Т. 2. — № 3. — С. 130-135.

3.  Фрейдин М.Б., Брагина Е.Ю., Огородова Л.М., Пузырев В.П. Генетика атопии: современное состояние. // Вестник ВОГиС, 2006. — Том 10. — № 3 — С. 492-503.

4.  Mitsuyasu H., Izuhara K., Mao X.-Q. et al. Ile50Val variants or IL4Ra upregulates IgE synthesis and associates with atopic asthma // Nat. genet., 1998. — v. 19. — Р. 119-120.

5.  Wechsler M., Lehman E., Lazarus S. et al. National Heart, Lung and Blood Institute’s Asthma Clinical Research Network. beta-Adrenergic receptor polymorphisms and response to salmeterol //American Journal Respir. Crit. Care Medicine, 2006. — v. 173. — P. 519-526.

6.  Palikhe N., Kim S-H., Cho B-Y. et al. Genetic variability in CRTH2 polymorphism increases eotaxin-2 levels in patients with aspirin exacerbated respiratory disease // Allergy, 2010. — v. 65. — Р. 338-346.

7.  Moller M., Gravenor M., Roberts S. et al. Genetic haplotypes of Th-2 immune signalling link allergy to enhanced protection to parasitic worms. // Human Molecular Genetics, 2007. — v. 16. — Р. 1828-1836.

8.  Denham S., Koppelman G, Blakey J. et al. Meta-analysis of genome-wide linkage studies of asthma and related traits // Respir. Research, 2008. — v. 9. — р. 38.

9.  Weaver C., Hatton R., Mangan P., Harrington L. IL-17 family cytokines and the expanding diversity of effector T cell lineages // Annual Revy Immunology, 2007. — 25. — Р. 821-852.

10.  Bullens D., Truyen E., Coteur L. et al. IL-17 mRNA in sputum of asthmatic patients: linking T cell driven inflammation and ranulocytic influx? // Respir. Res., 2006. — v. 7. — Р. 135.

11.   Kawaguchi M., Takahashi D., Hizawa N. et al. IL-17F sequence variant (His161Arg) is associated with protection against asthma and antagonizes wild-type IL-17F activity // Journal of Allergy and Clinical Immunology, 2006. — v. 117. — Р. 795-801.

12.   Van Eerdewegh P., Little R., Dupuis J. et al. Association of the ADAM33 gene with asthma and bronchial hyperresponsiveness // Nature, 2002. — v. 418. — Р. 426-430.

13.   Bazzi M., Al-Anazi M., Al-Tassan N.A. et al. Genetic variations of ADAM33 in normal versus asthmatic Saudi patients // https://biotechcentersa.org/asthma-genetics/.

14.   Sleiman P., Flory J., Imielinski M. et al. Variants of DENND1B associated with asthma in children // New England Journal of Medicine, 2010. — v. 362. — Р. 36-44.

15.   Сардарян И.С. Фенотипические особенности бронхиальной астмы у детей при различных аллельных полиморфизмах генов «предрасположенности» (GSTТ1, GSTМ1, ACE, eNOS) / Автореф. дисс. к.м.н. — СПб, 2009. — 22 с.

16.   Koppelman G., te Meerman G., Postma D. Genetic testing for asthma // Eur. Respir. J., 2008. — v. 32. — Р. 775-782.

17.   Postma D., Koppelman G. Genetics of asthma: where are we and where do we go? // The Proceedings of the American Thoracic Society, 2009. — v. 6. — Р. 283-287.

Источник

Читайте также:  Бронхиальная астма причины у ребенка

Бронхиальная астма — болезнь наследственная. Это утверждение настолько общеупотребительно, что, казалось бы, и не нуждается в доказательствах. Однако пока, даже несмотря на расшифровку генома человека, в области генетики бронхиальной астмы вопросов всё еще больше, чем ответов, и утверждать, какую роль наследственность играет в развитии бронхиальной астмы, очень сложно. Но все же, есть интересные факты, которые говорят о генетической теории заболевания бронхиальной астмой, постараемся в них разобраться.

Термин наследственная астма означает что заболевание способно передаваться от родителей к детям, а раз это так, то причины болезни должны храниться в генах человека. При этом не надо путать наследственные болезни с врожденными (с которыми ребенок рождается — они могут быть как генетическими, так и связанными с действием на плод внешних факторов), а также с семейными (не все случаи повторяющихся в семье болезней являются генетически обусловленными).

Азбука генетики

Определившись, что такое наследственные болезни, давайте вспомним начала генетики. Итак, вся генетическая информация о конкретном человеке записана в его геноме и хранится в ядре каждой клетки организма (кроме эритроцитов, которые ядра лишены за ненадобностью).

Носителем информации служат молекулы ДНК, состоящие из двух параллельных цепочек нуклеотидов и закрученные в спираль. Каждая хромосома (их у человека 23 пары, итого — 46) представляет собой отдельную молекулу ДНК, «намотанную» на особые белки, причем если эту молекулу «растянуть», то ее длина может достигать 5 сантиметров.

наследственность при астме

В одной хромосоме содержится от 50 до 250 миллионов нуклеотидов — «букв» генетического кода, а из этих «букв» складываются «слова» — гены. Прочитав один ген, клетка получает «техническое задание» на синтез определенного белка. Всего же у человека около 28 тысяч генов, при этом нужная информация (собственно гены) занимает лишь 1,5% от всего объема генома, а весь остальной набор из 3 миллиардов «букв» — так называемая «мусорная» ДНК (во всяком случае, функция этих участков неизвестна).

Стойкие изменения в составе генома называют мутациями. Нарушая синтез белка, который кодирует пораженный ген, мутации могут приводить к изменению ее функции, смерти клетки или опухолевому перерождению. Если же мутация произошла в половой клетке (или получена от родителей), она может передаться детям, приводя к развитию генетических заболеваний.

Причины наследственных заболеваний

Передача потомкам моногенных заболеваний, когда мутацией затронут один конкретный ген, подчиняется известным законам Менделя — доминантному или рецессивному типу наследования. Что это значит?

Каждый ген у человека представлен двумя копиями (аллелями), одна из которых получена от отца, а другая — от матери. Доминантный аллель будет «работать», то есть считываться для синтеза его продукта, независимо от его пары, а рецессивный аллель — только в паре с рецессивным. Пример доминантного признака — карий цвет глаз, а рецессивного — голубой.

Большинство наследственных заболеваний являются рецессивными и возникают, когда у ребенка встречаются два рецессивных дефектных гена, полученных от родителей. При этом сами родители, будучи носителями дефектного гена, данным заболеванием не страдают, так как у них функционирует другой (доминантный) аллель. Рецессивно наследуется, например, муковисцидоз — серьезное заболевание, одним из проявлений которого служит тяжелое поражение легких.

Существуют также наследственные заболевания, сцепленные с полом. Характерный представитель этой группы — гемофилия, проявляющаяся избыточной кровоточивостью. Гемофилией болеют почти исключительно мужчины, но передается болезнь по женской линии, поскольку дефектный рецессивный ген находится на женской Х-хромосоме (у мужчин пару ей составляет Y-хромосома, где этого гена нет, и поэтому у них рецессивный ген всегда проявляется).

Наследственность, конечно же, не ограничивается перечисленными закономерностями и содержит множество других интереснейших феноменов: кодоминирование генов, неполная пенетрантность, взаимодействия генов и т.д. Однако в этой статье мы не сможем очертить их круг — пора от затянувшегося вступления переходить к генетике собственно бронхиальной астмы.

Астма и наследственность

Астма и наследственность конечно же имеют взаимосвязь, но скажем сразу, что «гена бронхиальной астмы» не существует, а значит, и законы наследования Менделя к астме неприменимы. Бронхиальная астма относится к тем заболеваниям, при которых наследственность играет важную, но не единственную роль. Ведь можно заболеть астмой без всякой отягощенной наследственности, а можно, наоборот, остаться здоровым, даже если вся родня — астматики.

Если попытаться представить в виде уравнения риск заболеть бронхиальной астмой, то неизвестных в нем окажется намного больше двух. Скорее можно говорить о взаимодействии двух больших групп факторов — внешних (прежде всего аллергенов) и внутренних — генетических. Учитывая, что внутри этих групп закономерности тоже плохо поддаются анализу, можно представить себе всю сложность задачи. Строго говоря, такое уравнение применительно к конкретному человеку вовсе нельзя решить, а можно лишь приблизительно оценить риск, опираясь на результаты эпидемиологических исследований.

Читайте также:  Спиртное при астме бронхиальной

наследственность и астма

Роль генетических факторов в развитии бронхиальной астмы можно измерить с помощью такого показателя, как относительный семейный риск; он показывает, во сколько раз чаще, чем в среднем, это заболевание обнаруживается у ближайших родственников больного (детей, братьев и сестер).

Бронхиальная астма выявляется у 20-25% ближайших родственников астматика, поэтому при средней распространенности болезни в популяции 4-5% относительный семейный риск примерно равен 5. Много ли это? Для ряда других болезней с наследственной предрасположенностью относительный семейный риск выше: для шизофрении — 8, для сахарного диабета 1-го типа — 15, а для уже упоминавшегося моногенного заболевания муковисцидоза — 500.

Вдумчивые читатели могут возразить: накопление случаев астмы в одной семье может быть связано с влиянием одинакового внешнего окружения: спектра аллергенов, привычек питания и т.д. Это действительно так, но исследования с близнецами (в том числе выросшими порознь) убедительно доказывают значимость генетических факторов: у однояйцевых близнецов процент совпадений по астме высок (65-80%) и примерно в два раза выше, чем у разнояйцевых. В целом же научные данные позволяют считать, что наследственность определяет риск развития бронхиальной астмы на 50–60%.

Генетика астмы

Итак, мы знаем, что отягощенная наследственность повышает риск развития астмы примерно в 5 раз и что один виновный ген выявить не удается. С какими же генетическими аномалиями связана «эпидемия» астмы в развитых странах?

Исследователям в этой области приходится сталкиваться с большими трудностями, и зачастую данные одной работы не находят подтверждения в последующих. Во многом это обусловлено межэтническими различиями, а также тем, что в разные возрастные периоды астма имеет неодинаковый генетический портрет.

астма передается по наследству

Кроме того, как ни парадоксально, до сих пор не стандартизованы сами критерии диагностики бронхиальной астмы, согласно которым происходит отбор пациентов в генетические исследования. Мы знаем, какими клиническими признаками описывается заболевание — это повышение уровня иммуноглобулина Е (аллергических антител) в сыворотке, положительные кожные аллергопробы, обструкция и повышенная реактивность бронхов, хрипы и приступы удушья, наконец, собственно диагноз бронхиальной астмы, установленный врачом по совокупности симптомов. Однако относительная значимость каждого из этих признаков не вполне определена, а отбор по диагнозу астмы, установленному врачом, оказывается наименее достоверным.

Перефразируя эпиграф, можно сказать, что трудно найти у астматиков несколько одинаковых «опечаток» в наборе из 3 миллиардов букв генетического кода. Особенно если у части испытуемых астмы вообще нет.

Роль генов в развитии бронхиальной астмы

И всё же ученым удалось достичь некоторых успехов в выявлении генов, если не виновных, то подозреваемых в причастности к развитию астмы. Наиболее доказанной и важной выглядит роль нескольких генов, располагающихся на длинном плече пятой хромосомы (локусы 31-33). Эти гены кодируют те рецепторы и сигнальные молекулы (интерлейкины), с помощью которых Т-лимфоциты (особая их подгруппа, называемая хелперами 2-го типа) организуют каскад аллергического воспаления при астме.

Одну из главных ролей играют гены интерлейкина-4 и рецептора к нему, так как данный интерлейкин дает сигнал к выработке иммуноглобулинов Е и заставляет Т-лимфоциты специализироваться в хелперы 2-го типа. Точечные мутации в данных генах (или в участках, регулирующих их считывание) приводят к усилению этих сигналов и способствуют развитию аллергических заболеваний и бронхиальной астмы.

ген астмы

Интерлейкин-13 также кодируется геном пятой хромосомы и тоже регулирует синтез иммуноглобулинов Е. Наряду с этим мутации данного гена могут способствовать бронхиальной гиперреактивности.

На 11-й хромосоме локализован ген рецептора к иммуноглобулину Е, от мутаций которого зависит сила ответа тучных клеток на контакт с аллергеном. С этого звена начинается каскад воспаления, приводящий к приступу астмы или симптомам других аллергических болезней.

Этот список можно было бы продолжать, но нам нужно еще несколько слов сказать о роли наследственных факторов в определении тяжести астмы и в ответе на лечение.

Отягощенная наследственность при бронхиальной астме

На всё той же пятой хромосоме расположен ген, определяющий свойства Р2-адренорецепторов. Именно через эти рецепторы действуют на бронхи сальбутамол и родственные ему бронхорасширяющие лекарства (Р2-агонисты). Нарушения в структуре этого гена определяют склонность организма снижать чувствительность бронхов к повторному применению Р2-агонистов: гладкомышечные клетки бронхов перестают обновлять эти рецепторы или «убирают» их с наружной мембраны внутрь. Это не только уменьшает ответ на повторные ингаляции Р2-агонистов, но и увеличивает риск нежелательных эффектов. Не исключено, что замены одной «буквы» в этом гене могут быть связаны с более тяжелым течением бронхиальной астмы.

Генетические факторы, вероятно, лежат в основе изредка наблюдаемых случаев нечувствительности пациентов к глюкокортикостероидам — основным лечебным препаратам при бронхиальной астме. Механизм этого нарушения заключается в неправильной склейке фрагментов рецептора к глюкокортикостероидам. Сниженный ответ на антагонисты лейкотриенов (сингуляр или аколат) у некоторых астматиков также может быть обусловлен генетически.

И наконец, ответим на один из самых волнующих вопросов: если при бронхиальной астме генетически предопределено так много характеристик болезни, то как передается тяжесть астмы? Обязательно ли ребенок унаследует тяжелое течение заболевания от своих родителей? К счастью, здесь достоверных связей не обнаружено: тяжесть астмы у ребенка не зависит от тяжести заболевания у его родителей, а также от того, болеет ли астмой только один или оба родителя.

Так что давайте относиться к генетике без фатализма: то, что «написано на роду» относительно аллергических заболеваний, часто возможно предотвратить или сгладить. Мы пока не умеем изменять наши гены (может быть, это и к лучшему), но повлиять на аллергены и другие факторы внешней среды нам вполне по силам.

© Николай Вознесенский

Источник